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Abstraet--A falling drop may capture aerosol particles by one of a number of mechanisms, depending 
largely on the particle size. Submicrometre particles, which are the hardest to capture, tend to follow the 
streamlines of the suspending fluid and collide with the drop only by virtue of their finite radii. Many 
earlier calculations of the capture efficiency by this mechanism have neglected the boundary layer around 
the drop: it is shown that this can lead to significant error. A new interception formula is derived, taking 
the boundary layer into account, in which the efficiency depends on the Reynolds number of the drop 
as well as the ratio of the particle and drop radii. This formula is compared with an empirical formula 
derived experimentally by other workers, and both are applied to the removal of airborne particles by 
a nuclear reactor containment spray. 
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1. I N T R O D U C T I O N  

The capture of  aerosol particles by falling drops is of  interest in various fields of  study; the present 
work arises in the context of  nuclear power technology, but many  of the original references appear  
in the meteorological literature, and the results should be of  general interest in aerosol science. 
Water-cooled nuclear reactors are equipped with sprays to condense steam and remove fission 
products from the containment atmosphere in the event of  an accident. The speed with which 
fission products are removed has an obvious bearing on the size of  any possible release to the 
environment and a particular area of  interest is whether a small fraction of  the original contaminant  
may persist for long after the bulk of it has been removed. This paper is concerned with the 
persistence of aerosol particles in the size range, generally about  0.1-1 p m  radius, where removal 
by drops is least efficient. 

Since large-scale simulations (Hilliard et  al. 1970), however comprehensive, can cover only a 
finite range of possible conditions in the containment, a theoretical analysis is also desirable, in 
which pessimistic simplifying assumptions may be made in preference to a highly involved 
treatment of  mitigating factors. In this work, electrostatic and phoretic effects, which may enhance 
the removal rate in many circumstances, are ignored, and the analysis is restricted to capture by 
inertial impaction, interception and Brownian diffusion. Interception, a mechanism by which 
aerosol particles following the streamlines of  the suspending fluid collide with the drop only by 
virtue of  their finite radii, would then dominate the capture of  particles in the size range of interest. 
It is shown that many earlier calculations were erroneously based on a formula which ignored the 
boundary layer around the falling drop. A new interception formula is derived here, taking the 
boundary layer into account, and compared with an empirical formula derived experimentally by 
other authors. Both formulae are applied to the removal of  particles by a PWR containment spray. 

2. T H E O R Y  OF P A R T I C L E  C A P T U R E  

The essential quantity to obtain is E, the total capture efficiency, which is defined here as the 
number of  particles that a falling drop collects as a fraction of  those initially in its path, or more 
precisely, of  those whose centres initially lie within the cylindrical volume swept out by the falling 
drop. In the absence of electrostatic effects, temperature gradients and condensing steam, E 
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depends on four dimensionless parameters: 

E = E(a, Re, St, ~) 
where 
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v is the kinematic viscosity of the containment atmosphere and Pa its density, a is the radius of 
the drop and U its velocity, b is the radius of the aerosol particle, D its Brownian diffusivity in 
the containment atmosphere, Pw is the density of its constituent matter and C the correction factor 
for finite mean free path. The quantities tr, Re and St are, respectively, the Schmidt, Reynolds and 
Stokes numbers. 

The capture of very small particles, which is governed by diffusion, depends only on tr and Re. 
At the other extreme, comparatively large and heavy particles are captured by inertial impaction, 
depending almost entirely on St and Re; in the limit where both a -  ~ and x are negligibly small, 
impaction efficiencies vary from nil, when St is below a critical value Stc, which is itself a function 
of Re, to unity in the limit of high St. The region of greatest interest in the present work is the 
intermediate one, where the total efficiency is low and the ratio x may be vitally important. If both 
a -  ~ and St are negligible, a particle may be carried by the fluid along a streamline which passes 
so close to the drop that a collision occurs on account of the particle's finite size. The efficiency 
of capture by this process, interception, must be a function of x and Re. The total efficiency is 
frequently represented by the expression 

E(tr, Re, St, x) = Eaif(o', Re) + Eint(~;, Re) + Eimp(St , Re)  [6] 

ignoring any inaccuracy introduced by this simple separation of the contributing effects. 
For the earliest analyses, efficiency calculations, apart from those for diffusion, were available 

only in the limits of infinite Re (potential flow) and negligible Re (Stokes flow). Parsly (1971) 
recognized these limitations in the impaction regime, and more recently Grist (1982) chose 
pessimistically to use the low impaction efficiencies derived by assuming Stokes flow. However, the 
interception formula derived by Ranz & Wong (1952), using potential flow theory, has consistently 
been represented as the minimum efficiency that can occur. The significance of this assumption can 
be demonstrated by comparing the resulting formula with that which is obtained at the opposite 
extreme with Stokes flow (Fuchs 1964): 

Eint (Re ---* oo, potential) = 3 x [7] 

Ei,t(Re--* 0, Stokes) = 1.5 x 2 [8] 

the value of x being assumed to be small in both cases. Clearly, the use of [7] in the earlier work 
may turn out to have overestimated the washout rate when Re is finite. 

Spray drops in the size range of interest here may be regarded effectively as rigid spheres falling 
at their terminal velocities with Reynolds numbers mainly in the range 10-1000 (Pruppacher & 
Klett 1978). The nature of the fluid flow in such circumstances is discussed in standard engineering 
text books, such as Kay & Nedderman (1974), as well as the more specialized references to be cited 
later. Broadly speaking, the effect of viscosity in the flow round the leading face of the sphere is 
confined to a laminar boundary layer whose thickness is of the order Re-Ilia, where a is the radius 
of the sphere. A recirculatory wake follows, but outside these two regions the flow resembles that 
of a perfect fluid. It is shown later in this paper that the presence of the laminar boundary layer 
around a falling drop deflects the streamlines away from its surface by about 30/am at their point 
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of closest approach throughout the range of drop radii of interest. The inadequacy of the Ranz 
& Wong formula [7] for the capture of micrometre-sized particles is thus immediately apparent, 
since it follows that these must be captured, not from the outer fluid, but from within the boundary 
layer. 

3. FLUID FLOW AROUND A SPHERE 

At Reynolds numbers below about 400, which account for most of the range of interest here, 
the flow around a spherical drop is steady and can, in principle, be derived by numerically solving 
the Navier-Stokes and continuity equations which govern the fluid motion (Pruppacher & Klett 
1978). (At higher Re, instability sets in with the periodic detachment of eddies in the wake of the 
sphere.) With the further assumption that the aerosol particles do not perturb the fluid flow, but 
move in it as if they were point masses subject to their own inertia and to viscous drag forces, the 
particle motion can also be solved numerically. This programme has been carried out for a range 
of St, Re and x by Beard & Grover (1974) with flow fields derived by Le Clair et al. (1970). Slinn 
(1974) attempted to fit these results with an analytic expression in the form of [6] but the validity 
of his interception term has been questioned (Underwood 1983). For the present work, an 
alternative interception formula has been derived from boundary layer theory. The physical basis 
of the derivation, which also leads to an approximate formula for the critical Stokes number, is 
described below, with the detailed mathematics relegated to the appendix. 

If the spray drop is moving through a perfect, inviscid fluid at a steady speed, U, the radial and 
tangential components of fluid velocity relative to the centre of the sphere may be derived by 
potential flow theory: 

u r = - U c o s O  1 - ~  [91 

and 

uo= U sin 0(1 + ~r33) [10] 

where 0 is the angle between the position vector, r, relative to the centre of the drop, and the 
direction of travel (see figure la). These equations may be approximated for the fluid close to the 
surface, where 

and 

- a ,  

uo~, 1 . 5 ( U ) a  sin 0. 

In the region of the forward stagnation point, 

), 
and 
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x and y being distances from the stagnation point, measured parallel and perpendicular respectively 
to the surface. If the curvature is neglected, but (U/a) remains finite, [13] and [14] describe a 
situation known as three-dimensional stagnation flow. 

With finite viscosity and no slippage at the surface, the full equations for the fluid motion can 
still be considerably simplified in the case of three-dimensional stagnation flow (see the appendix). 
The resulting solution can clearly be interpreted in terms of a boundary layer of constant thickness, 
outside which ux remains unchanged, as in [14], but u v is modified so that 
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Figure la. Coordinate system for fluid flow around a falling 
drop. 

I 
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Figure lb. Coordinate system for a particle on the central 
streamline. 

where 

u,. --, - 3 ( U ) ( y  - 6,) [15] 

/ a v  x~ 1/2 
6, = 0 . 8 0 4 5 ~ - ~ )  . [16] 

N ¢ 

The quantity 6, is known as the displacement thickness, as it is the distance by which streamlines 
are displaced away from the surface by the effect of the boundary layer. Equations [15] and [16] 
also hold good as an approximation near the forward stagnation point of a finite drop at high Re, 
in which case [16] can be rewritten as 

61 = 0.657 Re-l/2a. [17] 

This result is used in the appendix to calculate the critical Stokes number for impaction. 
Further away from the stagnation point, the boundary layer equations are no longer exactly 

soluble, even in the limit of  high Re, but good approximate solutions can be obtained by 
perturbation theory over the range of 0 ~< 75 °. Beyond this, the perturbation expansion does not 
converge rapidly, and furthermore [12] ceases to be a reliable approximation to the outer fluid 
velocity, owing to the neglect of the wake behind the drop. However, it is shown in the appendix 
that streamlines which pass well inside the boundary layer, from which particles may be captured 
by interception, make their closest approach to the surface when 0 ~ 70 ° (see figure 2), in contrast 
to the situation both in potential and Stokes flow, where the closest approach is at 90 ° . 

This mathematical description of the boundary layer flow allows a new interception formula to 
be derived, which includes the dependence on Re. For small particles, where xa ,~ 6,, the formula 
is 

E i n  t = 1.00 Rel/2x :. [18] 

Since the displacement thickness, still of  order Re-J/2a, must also be much smaller than the radius 
of the drop, the range of validity of  [18] is 

~: ,~ Re 1/2 ,~ 1. [19] 

By contrast, the formulae quoted in [7] and [8] are valid only for extreme values of Re. 

Figure 2. Flow pattern around a falling drop. Not to scale. 
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It is important to note that all three interception formulae rest on the assumption that the centre 
of the aerosol particle follows a streamline of  the fluid through to the moment of  collision, at which 
point the particle is captured. Significant departures from this theory in experimental results are 
discussed later. 

4. W A S H O U T  RATES IN THE PWR C O N T A I N M E N T  

The implications of  the new interception formula can now be tested by specific calculations for 
a PWR containment. The basic assumption is that spray drops, small enough to be regarded as 
undistorted spheres, fall through the containment atmosphere at their terminal velocity, and that 
fission products are present as an aerosol of  aqueous particles which are very much smaller than 
the falling drops. One further possible mode of capture, through the entrainment of particles into 
the recirculatory wake as it develops behind the accelerating drop, is thus neglected. In a full 
analysis, a range of containment pressures, atmospheric compositions, temperatures and viscosities 
would be taken into account, but a single set of  values is sufficient to demonstrate the main effects. 
The following values are therefore assumed: 

Pa (density of atmosphere) = 1.2 kg m -3 

Pw (density of drops and particles)= 103 kg m -3 

v (kinematic viscosity of atmosphere) = 1.5 x 10 -5 m 2 s -t 

T (absolute temperature) = 300 K. [20] 

Spray drops with radii in the range 50-1000/~m are considered. In table 1, values of  Re and the 
terminal velocity, U, have been calculated by standard methods (Fuchs 1964). The displacement 
thickness at 70 ° from the forward stagnation point, fit (70°), is obtained from [A.29] of  the 
appendix, the critical Stokes number, Stc, from [A.43], and the corresponding radius, bc, from 
[A.31] with the approximation that C = 1. 

Capture by interception is only important for aerosol particles with radii <b¢, otherwise 
impaction is dominant. The values in table 1, therefore, show that intercepted particles must be 
much smaller than the displacement thickness and are thus captured from streamlines passing well 
within the boundary layer. In other words, the conditions specified for [18] to be correct are 
satisfied, except for the 50 #m drop, for which [8] is preferable. In no case should the Ranz & Wong 
formula [7] be applied. 

By combining [18] with a standard formula for convective diffusion across a boundary layer 
(Underwood 1983) and substituting both into [6], the total efficiency in this region can be expressed 
as 

where 

E = 3.0 Re-t/2o "-2/3 + 1.00 Ret/2x z 

V 

D 

CkT 
O ~ -  

6rcp, vb 

and k is Boltzmann's constant, 1.38 x 10-23 J K t. 

[21] 

[22] 

[23] 

Table 1. Spray drop parameters for PWR containment 

&t (70°) 
a Gum) U (m s -I) Re Gum) Sto b c Gum) 

50 0.25 1.7 35 0.84 3.7 
100 0.69 9.2 30 0.50 2.4 
200 1.6 42 28 0.34 1.9 
300 2.4 97 28 0.28 1.7 
700 5.2 480 29 0.22 1.5 

1000 6.7 900 31 0.20 1.5 

M.F. 14/4~-F 
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The minimum efficiency could be sought by exhaustive computation, but the problem is 
considerably simplified by observing that the terminal velocities of  the spray drops happen to be 
approximately proportional to their radii over most of the region of interest; thus 

Re I/2 ,~ 3.2 × 104a [24] 

all lengths being measured in metres. Further substitution of numerical values from [20] into [21], 
with the approximation that C -- 1, leads to the expression 

E = a-1(8.3 × lO-J3b -2/3 + 3.2 × 1 0 4 b 2 ) .  [25] 

Simple calculus shows that E reaches a minimum of 2.0 x 10-8a-I  when b = 4.0 x 10 -7 m. The 
efficiency is less than twice this minimum value throughout the range of  particle radii from 0.1 to 
1/~m. Minimum efficiencies for the range of  collecting drop sizes shown in table 1 vary from 
4 × 1 0  - 4  down to 2 × 10 -5. 

The removal rate of  aerosol particles from the containment can be calculated as follows: 

2(b) =--~ a2E(a, b)dN(a) [26] 

where 2 is the fractional removal rate, h is the height through which a drop falls, V is the volume 
of the containment and N(a) is the number of spray drops emitted per second with radii < a; the 
corresponding volumetric rate of  spraying is 

F = ~ f a 3 d N ( a ) .  [27] 

A relatively simple relationship between these quantities can be deduced by using [25] and assuming 
that the size distribution of spray drops is log-normal; the minimum removal rate in this case is 

8/ 3hF "X 2 
2(0.4/~m) = 2 x 10- ~ ) e x p [ E ( l n  trs) ] [28] 

where am is the mass-median drop radius and trg the geometric standard deviation of  the 
distribution. Reasonable numerical values for h, V and F (Grist 1982), am and ag (Hilliard et al. 
1970) are 

h = 3 6 m  

V = 7.08 x 104 m 3 

F = 0 . 3 9 m 3 s  I 

am = 6.05 x 10 -4 m 

ag = 1.53 [29] 

whence 

2(0 .4#m) = 1.2 × 10-Ss -~. [30] 

In other words, on the basis of these assumptions, the most persistent aerosol has a half-life of 
about 16 h in the sprayed containment. 

For comparison, the calculation made above can be repeated with the Ranz & Wong formula 
in place of  [18]. The result is a minimum capture efficiency of 1.7 × 10-7a-I  for aerosol particles 
of radius 2.3 × 10 -8 m. The corresponding minimum removal rate in the sprayed containment is 
1.0 x 10-4s -l, a half-life of  under 2h.  

Since [18] relies on a number of simplifying assumptions, which are discussed below, further 
comparison with an empirical formula is worthwhile. Rrbig et al. (1978) were able to fit their 
experimental results as follows: 

Eint(empirical) = 0.35 Rel/2x 3/2 [31] 

the numerical factor quoted here being modified on account of their different definition of Re. If 
this formula is used in place of  [18], the minimum in the total efficiency is rather higher and its 
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Table 2. Position and size of minimum capture efficiency 
from theoretical and empirical formulae 

Theoretical Empirical 

a (urn) b ~  (pm) E~. b~a~ ~ m )  Emi n 

50 0.40 4.0 x 10 -4 0.23 6.4 x 10 -4 
100 0.40 2.0 x 10 -4 0.20 3.6 x 10 -4 
200 0.40 1.0 × 10 -4 0.17 2.0 x 10 -4 
300 0.40 6.7 x 10 -5 0.16 1.4 x 10 -a 
700 0.40 2.8 × 10 -5 0.13 6.9 x 10 -5 

1000 0.40 2.0 x 10 -5 0.12 5.1 x 10 -5 
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position, which now depends on the drop radius, is shifted towards lower particle radii. For  
example, the minimum total efficiency for a drop of radius 100/~m is 3.6 x 10 -4, which occurs when 
the particle radius is 0.20/~m; more detailed figures are given in table 2. The removal rate in a 
sprayed containment can be calculated by methods similar to those used above, though rather more 
complicated on account of the less convenient mathematical form of E. The minimum rate 
predicted for otherwise identical conditions is 

2(0.14/am, empirical) = 2.5 × 10 -5 s -1 [32] 

and the corresponding half-life is about 8 h. 

5. DISCUSSION 

In deriving [18] it has been necessary to neglect variations in the fluid velocity over distances 
comparable with (in fact, significantly greater than) the radius of  the aerosol particles. Even with 
the great disparity in size between the particles and spray drops considered here, this assumption 
cannot hold good when the particle approaches the drop to within a few times the particle radius. 
Indeed, with ideally smooth surfaces and a perfectly continuous fluid, the particle and drop could 
never come into contact (Pruppacher & Klett 1978). The fact that they do so is attributable partly 
to interparticle forces and partly to the molecular nature of the fluid (the mean-free-path of 
molecules in the containment atmosphere is of the order of  0.1 #m). Calculated efficiencies in the 
impaction regime tend to be borne-out by experimental measurements, which confirm the 
theoretical prediction that the finite particle size is of only marginal effect here. This is clearly not 
the case in the interception regime, where the particle size is all-important. In the region of interest, 
the particle approaches the drop surface on a glancing trajectory in a fluid whose undisturbed 
velocity is proportional to the distance from the surface. The motion of  the fluid must therefore 
be strongly influenced by the presence of the particle, which takes on a rolling motion so as to 
balance the viscous forces acting on its own surface. The capture efficiency, particularly of small 
particles by large drops, may also be affected by circulation within the drop, which modifies the 
boundary condition at the drop's surface. The neglect of  such complexities implies that the 
interception formula of [18], though certainly preferable to the Ranz & Wong formula used 
hitherto, should not be considered in any way precise. 

Experimental measurements by R6big et al. (1978) confirm [18] only to the extent of its 
dependence on Re1/:; otherwise the theoretically-derived formula appears significantly to under- 
estimate the interceptive capture of the smaller particles. On the other hand, numerical com- 
putations by Beard (1974), which include the influence of  terrestrial gravity on the aerosol particle 
but otherwise rest on the same assumptions as the present work, predict significantly higher 
efficiencies for the capture of submicrometre particles than were observed in these experiments 
(Underwood 1983). Although the empirical formula [31] can very reasonably be used as above in 
exploratory calculations, its lack of theoretical foundation suggests that it should be applied only 
with caution in any conditions which differ significantly from those of  the experiments. 

In practice, the capture of submicrometre particles is likely in many cases to be dominated by 
mechanisms excluded from consideration in this work. For  example, the effect of  Stefan flow and 
diffusiophoresis in the presence of condensing steam may well have been the controlling factor for 
the finest aerosol component in the Containment Systems Experiment (Hilliard et al. 1970), where 
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the temperature of the vessel was maintained by steam injection; the lowest observed collection 
efficiency was 1.5 x 10 -3 (Postma & Pasedag 1973), well above the theoretically predicted 
minimum. Although these phoretic effects can significantly reduce the persistence of submicrometre 
aerosols, a detailed analysis of evaporation, condensation and heat transfer processes in the 
containment, for a full range of accident conditions, would be needed in order to take them 
properly into account. Their importance in the meteorological context is discussed in the relevant 
literature (Pruppacher & Klett 1978). 

6. CONCLUSIONS 

Many earlier analyses of particle removal by falling drops have neglected the boundary layer 
around the drop in estimating the capture efficiency by interception. Equation [18], derived here 
so as to take account of the boundary layer, and the empirical formula of R6big et al. (1978) both 
imply that this neglect may have led to an overestimate of the removal rate for the most persistent 
aerosol particles by factors ranging from 4 to 8, in the absence of electrostatic and phoretic effects. 
Further theoretical work at the microphysical level is required in order to understand fully the 
motion of an aerosol particle and the surrounding fluid in the interception regime; at present no 
physically based formula is totally consistent with the most relevant experimental data. 

Acknowledgement--This work is published by permission of the U.K. Central Electricity Generating Board. 
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A P P E N D I X  

Mathematical Details 

Flow around the spherical spray drop 

The flow of air around the spray drop is governed by the continuity equation, 

V.u = 0 [A.1] 

and the Navier-Stokes equation, 

t~u VP 
(~t + u" Vu . . . .  t- vV2u [A.2] 

Pa 

subject to the condition of no slip at the surface. 
If  the drop is falling with a steady velocity U, the position coordinate and fluid velocity can be 

redefined in a reference frame in which the drop is at rest, so that the time-dependent term in [A.2] 
vanishes and the fluid velocity tends to - U  at large distances. The potential flow solution, where 
v --*0 and the fluid moves freely over the drop's surface, is given in [9] and [10] of  the main text. 

The boundary layer, which develops with finite viscosity, can be described in terms of  two 
curvilinear coordinates, since the flow is axially symmetric about the trajectory of  the drop's centre 
(see figure la): 

x = aO [A.3] 

and 

y = r - a. [A.4] 

In three-dimensional stagnation flow, where the curvature a- I  vanishes but (U/a) remains finite, 
an exact solution of  [A.1] and [A.2] can be obtained in the following form, slightly adapted from 
Goldstein (1938): 

U y - - -  3 ( ~ ) f ( ~ / )  [A.6] 

and 

where 

f9 /Ux '~  2 9 / U c \  2 ~ } 

,>: + tv) + 
[A.7] 

~1 = c - ' y  \-~v / y [A.8] 

f " + if" + ½(1 - f ' 2 )  = 0 [A.9] 

and the "primes" denote differentiation with respect to r/. The boundary conditions 

f (0)  = f '(0) = 0 [A. 10] 

and 

f ' ( r / - - .  ~ )  = 1 [A.1 l] 

give the correct behaviour at the surface and lead to [14] and [15] of the main text in the outer 
fluid. 

Equation [A.9] belongs to a class of  boundary layer equations for which accurate numerical 
solutions are available (Evans 1968). The functions f a n d f '  are plotted in figure A1 and for large 
values of  ~/, 

f ( r / ~  oo) = r / -  6" = ~ / -  0.8045. [A.12] 
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/ /  

1 2 3 4 

Figure AI. The dimensionless boundary layer functions for three-dimensional stagnation flow. 

Equations [15] and [16] of  the main text follow by substituting the original variables. When the 
finite radius is taken into account, an exact reduction of  the full equation is no longer possible, 
but an approximate solution can be found for thin boundary layers by making a suitable coordinate 
transformation and then applying perturbation theory (Merk 1959). No attempt is made here to 
reproduce the full mathematical analysis, which is highly involved, but the various quantities that 
arise in the treatment by Evans (1968) are evaluated below for the special case of a sphere. 

The curvilinear distance, x, from the stagnation point, the perpendicular distance, s, and the 
outer velocity, U~, are respectively, 

x = aO [A. 13a] 

s = a sin 0 [A.13b] 

and 

U] = 1.5 U sin 0 [A.13c] 

where the potential flow value from [12] of the main text has been taken as an approximation to 
U~. The transformed coordinates used by Evans (1968) then become 

f ' /  \ a 3 
(, - c o s  +co  0) r ,41 

j0 \ --7-/  = ~u7 
and 

where 

Ulsy  y 
- -  - [ A .  ] 5 ]  r/ v(2~)1/2 c 

2xf12 a ( 2 + c o s 0 )  j'2 
c = - -  [A. 16] 

3 Re j/2 ( l + c o s 0 )  

and Re is defined as in [3]. The definition of r/becomes identical to [A.8] at the stagnation point, 
where 0 = 0. The remaining parameters used in the analysis are 

2~dUi 2cos 0(2 + cos 0) 
/ / =  [A.17] 

Ul d~ 3(1 + cos 0) 2 
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and 

dfl dfl 8(1 - cos 8 ) (2  + cos 8) [A.18] 
= 2~--~ = 9(1 + cos 0) 4 

It can be shown that 

where 

ux = U~ f '(q) [A. 19] 

f "  + f f "  + fl ( l + f'2)=--~Z f '  _ f "  [A.20] 

and the "prime" notation now denotes partial differentiation with respect to r/; the boundary 
conditions are identical to [A.10] and [A.11]. At the stagnation point, [A.20] becomes identical to 
[A.9]. 

If the terms on the r.h.s, of [A.20] are small, the equation can be treated by perturbation theory 
with the series expansion 

f =  fJ + ~-~flf2+'". [A.21] 

Evans 0968) has computed the functions f~ and f2 and provides tables of the chief numerical 
parameters for a range of values of ft. 

With the boundary layer flow thus obtained by standard methods, an interception formula can 
now be derived by assuming that the centre of an aerosol particle precisely follows a streamline 
in the fluid; interception then occurs if the streamline passes closer to the surface than the radius 
of the particle. Because of the axial symmetry, the streamlines describe a set of tubular surfaces, 
each of which can be defined by a constant value of the stream function, tO, which is equal to the 
total rate of fluid flow through the tube divided by 2n. The efficiency Ei,t was defined in section 
2 so that a particle that is only just intercepted must therefore be travelling along a streamline for 
which 

2ntO = Eint~a 2 U. [A.22] 

The following expression for tO in the boundary layer can be obtained from [A.15] and [A.19]: 

which depends on 0 through s, Ut, c and the functional form o f f  At the point of closest approach, 

0~0 , -  0_~c~y001=0 [A.241 

and Ei,t can therefore be found by maximizing the value of tO in [A.23], where y = b, and 
substituting this value into [A.22]. 

If b is large enough to extend into the outer fluid, 

tO--1.5Ua sin20 { b -  C(t~l*(fl)---~zf2(v/-'* o0, ~)}  [A.25] 

to second order in the perturbation series, and the Ranz & Wong interception formula [7] follows 
by neglecting the displacement term, i.e. assuming that e ,~ b, in [A.25]. At the other extreme, where 
b ,~ e, the function f can be approximated by the first non-zero term in a Taylor series, 

f ..~ [ 4" .[N',t 2 ",~ ~ j  ~,,jq • [A.26] 
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Table A I. Boundary layer quantities for interception 
efficiency calculation 

dfl 2q~ 
0 fl d~ f]'o f~'o b2U R e ' '  

45 0.438 -0 .083  0.883 -0 .063  0.733 
60 0.370 - 0 . 2 1 9  0.831 -0 .073  0.959 
75 0.246 -0 .593  0.729 -0 .098  0.978 
70 0.297 -0 .422  0.772 -0 .087  0.997 

6*(0.297) = 0.913; fz(r/--+ ~ ,  0,297) = -0 .137 .  

By combining [A.22], [A.23] and [A.26] and substituting the original variables, 

(9Rel/2x2sin20(l+cosO)f . . . . .  -~  )}  
Eim=max~. ~ -  ~ 7 c ~ 0 - - ~  ~j,(o)+ f 2 ' ( 0 ) + "  + O ( R e x  3) [A.27] 

where x is defined as in [5] of the main text. Table A1 shows the relevant quantities, evaluated for 
0 in the range 45°-75% using quadratic interpolation between the values of f'((0) and f~'(0) 
tabulated by Evans (1968), from which it appears that the maximum occurs when 0 is about 70 °. 
Here the second-order correction to • is slightly less than 5% of the first-order term, which suggests 
good convergence. After rounding to two decimal places, it follows that 

Eim= 1.00 Rel/2x2[1 + O(Re'/Zx)]. [A.28] 

The displacement thickness at this angle is obtained via [A.25] by interpolating between tabulated 
values of 61*(fl) and f2(r/~ 0% fl) and substituting for c, whence 

61 (0 = 70 °) = 0.92 Re -~/2 a. [A.29] 

The critical Stokes number 
Impaction calculations are generally based on the assumption that the drag on a small aerosol 

particle is directly proportional to its velocity relative to the surrounding fluid (Pruppacher & Klett 
1978). If gravitational and interparticle forces are neglected, the equation of motion is 

d2~ d~ 
S t ~ = 6  dr [A.30] 

where 

and 

r ~ = -  
a 

u 

U 

Ut 
a 

2Ub2pw C 
St = [A.31] 

9avpa 

St is the Stokes number, as in the main text. If the particle is approaching the drop along the central 
streamline, [A.30] can be rewritten in scalar form, 

St vv' + v = --tJr [A.32] 

where v is the dimensionless velocity of the particle and the "prime" denotes differentiation with 
respect to ~, the dimensionless distance from the centre of the drop to the particle, measured in 
the direction of the relative flow of the fluid; thus v is always positive and ~ negative for the 
approaching particle (see figure l b). In potential flow, therefore, 

St vv' + v = 1 + ~ -3. [A.33] 
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On this simple model, pure impaction will not occur unless a particle following the central 
streamline has a finite residual velocity on arrival at the surface, where ~ = - 1 ;  otherwise an 
identical particle, infinitesimally displaced from the central streamline, would be carried past the 
collecting drop by the fluid and could only be captured by virtue of  its finite radius. If there is no 
residual velocity, let 

v = (1 + ~ -3)q~. [A.34] 

It follows that 

St ~b[(1 + ~ -3)q5' - 3~ -4~b] + 4) = 1. [A.35] 

When ~ is large and negative, ~b is constant and equal to unity, as the particle simply follows the 
flow. At the surface of  the drop, 

- 3  St ~b2+ q5 = 1 [A.36] 

therefore 

~b(- I) = 

The critical value of the Stokes number, 

1 
Stc 12 

1 -t- ~/1 -- 12St 

6 St 
[A.371 

[A.381 

emerges from the requirement that q~ must be real. It can also be shown that a series solution of 
[A.35] in ascending powers of  St, which tends to unity as ¢ --, - ~ ,  also converges to [A.37], with 
the minus sign in the numerator, at the surface. 

There is no simple derivation of Stc when the boundary layer is included. However, a slight 
overestimate of  Stc can be obtained by assuming that the particle must have sufficient residual 
velocity after travelling through the potential flow regime of the outer fluid to be able to cross the 
displacement thickness of  the boundary layer. This approximation is valid if the particle velocity 
is several times as large as the fluid velocity at all points in its passage through the boundary layer. 
It follows, from [17] of the main text and [A.32], that 

Vres = 0.657 Re -1/2 St -1 . [A.39] 

As a first step towards a formula for v~s, [A.33] has the following approximate solution while v 
remains close to unity: 

x+) 
v + exp st  ¢3 dF. = 1 -  St -3 exp[-gi - )  j .  [A.40] 

For large values of St, 

v~s ,-~ 1 - ½ St -1 + O (St-:) .  [A.41] 

Equation [A.40] can be used to provide initial values of  v for the numerical integration of [A.33]; 
residual velocities so obtained by the standard Runge--Kutta method in the range of St from 0.2 
to 2.0 are given in table A2. These values can be very well fitted by an approximate formula, 

St - 0.139 
Vrcs = St + 0.323 [A.42] 

Table A2. Residual velocity in 
potential flow 

St v~ Equation [A.42] 

0.2 0.117 0.117 
0.5 0.439 0.439 
1.0 0.653 0.651 
2.0 0.799 0.801 
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which also compares well with the asymptotic formula [A.41] for large St but should not be 
extrapolated to St < 0.2. 

Substitution from [A.42] into [A.39] provides the following formula for the critical Stokes 
number: 

St c = 0.070 + (0.0048 + 0.26 Re -~/2 + 0.11 Re- l )  ~/2 + 0.33 Re -~'2 [A.43] 

Equation [A.43], which shows remarkably good agreement with the exact computations by Beard 
& Grover (1974), even when Re = 1, has been used for the calculations summarized in table 1 of 
the main text. 


